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X-38 Landing Gear Skid Test Report
Edwards Air Force Base Lakebed

George K. Gafka
NASA Johnson Space Center

Robert H. Daugherty
NASA Langley Research Center

ABSTRACT

NASA incorporates skid-equipped landing gear on its series of X-38 flight test
vehicles. The X-38 test program is the proving ground for the operational Crew Return
Vehicle (CRV). a vehicle designed to return the crew from the International Space
Station in the event of an emergency where no other means of escape is possible. The
vehicle is envisioned to land at a relatively low speed by making use of a gliding parafoil.
The skid-equipped landing gear is designed to attenuate the vertical landing energy of the
vehicle at touchdown using crushable materials within the struts themselves. The vehicle
then slides out as the vehicle horizontal energy is dissipated through the skids. A series of
tests was conducted at Edwards Airforce Base (EAFB) in an attempt to quantify the drag
force produced while “dragging™ various X-38 landing gear skids across lakebed regions
of varying surface properties. These data were then used to calculate coefficients of
friction for each condition. Coefficient of friction information is critical for landing
stability analysis as well as for landing gear load and interface load analysis. The skid
specimens included full- and sub-scale V201 (space test vehicle) nose and main gear
designs. a V131/V132 (atmospheric flight test vehicles) main gear skid (actual flight
hardware), and a newly modified, full-scale V201 nose gear skid with substantially
increased edge curvature as compared to its original design. Results of the testing are
discussed along with comments on the relative importance of various parameters that
influence skid stability and other dynamic behavior.
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Introduction

NASA incorporates skid-equipped landing gear on its series of X-38 flight test vehicles.
The X-38 test program is the proving ground for the operational Crew Return Vehicle
(CRYV), a vehicle designed to return the crew from the International Space Station in the
event of an emergency where no other means of escape is possible. The vehicle is
envisioned to land at a relatively low speed by making use of a gliding parafoil. The
skid-equipped landing gear is designed to attenuate the vertical landing energy of the
vehicle at touchdown using crushable materials within the struts themselves. The vehicle
then slides out as the vehicle horizontal energy is dissipated through friction forces acting
on the skids. The X-38 program includes atmospheric flight test vehicles designated to
date as V131 and V132, as well as a space test vehicle designated as V201. It should be
noted that the skids utilized on these two types of vehicles are vastly different.

A series of tests was conducted at Edwards Airforce Base (EAFB) in an attempt to
quantify the drag force produced while “dragging”™ various X-38 landing gear skids
across lakebed regions of varying surface properties. These data were then used to
calculate coefficients of friction for each condition. Coefficient of friction information is
critical for landing stability analysis as well as for landing gear load and interface load
analysis.

Test Equipment

The skid tests were conducted using NASA Langley’s Instrumented Tire Test Vehicle
(ITTV). The ITTV consists of an approximately 28,000-1b. truck to which a
pneumatically driven test fixture loading system is attached. A specially designed force
measurement dynamometer allows a variety of aircraft landing gear components. such as
tires, to be mounted to the test fixture. In this case. the main gear skids used on both the
V131 and V132 (X-38 atmospheric flight test vehicles) as well as the candidate skids for
the space test vehicle V201 were mounted to the test fixture using adapter plates. The
forces and moments associated with tire or skid drag testing (i.e. vertical load, drag load.
side load. aligning torque, and overturning torque) were measured and recorded by an
onboard electronic data acquisition system. Continuous time histories were taken by
strain gages, speed sensors. and distance sensors for each test run. The test fixture loading
system at the rear of the ITTV can be seen below in figurel. For this skid test program.
the fixture was used to generate its maximum downward load of approximately 50001b.



DATA ACQUISITION SYSTEM

Figure 1. NASA Langley’s ITTV.

The test plan called for the testing of five different skids:

*  VI131/V132 main gear (actual flight hardware, denoted as “131™)

* the current V201 nose gear design (edge curvature radius approx. 0.75 inches,
denoted as “201N™)

* the current V201 main gear design (edge curvature radius approx. 1.58 inches.
denoted as “201M™)

* asub-scale V201 nose gear design (50% scale, denoted as “20INS”)

* asub-scale V201 main gear design (40% scale, denoted as “201MS™)

The V201 series skids were solid aluminum plate replicas of the latest skid design at the
time. It should be noted that, while not originally in the test plan, yet another skid
“specimen” was tested later in the test program. This “specimen”™ was the 201N skid
described above but modified as will be discussed later, and is denoted as “201NR”. Due
to the limited downward force capability of the ITTV (~50001b), the sub-scale replicas
were manufactured to better simulate actual vehicle landing loads by attempting to match
the skid/ground bearing pressures to those expected for flight. In other words, by
reducing the size of the skid, and therefore the skid contact area, the bearing pressure is
increased without increasing load. See Appendix A for detailed drawings of each V201

skid. Figure 2 shows a close-up of a typical installation of a skid specimen on the test
fixture of the ITTV.

Figure 2. Typical skid installation on ITTV.



Test Plan

Test Matrix Reduction Study
Table 1 shows the initially-proposed test matrix developed during pre-test planning:

Table 1. Initial test matrix.
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This matrix shows planned test runs using six different crab or yaw angles, 8. (NOTE:
for these tests only, crab angle and yaw angle are used interchangeably) at each of six
different test speeds. It was planned to conduct these tests on each of two different
strength surfaces, on five different skid specimens, and with two different vertical loads.
Combining all of these desired test parameters resulted in a test matrix that grew to a total
of 720 runs.

Multi-Speed / Constant Speed Discussion

Due to the large number of initially-proposed test cases coupled with the limited amount
of test time on the lakebed. a test matrix reduction was necessary. However, instead of
removing individual test matrix cases, LaRC proposed a plan to acquire an entire “row™
of test matrix data per test run by continuously taking data while decelerating the ITTV
from 76 ft/sec down to 0 ft/sec (52 mph to 0 mph).

This data acquisition procedure had to be verified prior to testing. First, some
preliminary tests were conducted near NASA LaRC with a *dummy” skid prior to
shipping the ITTV out to EAFB. These preliminary drag tests were conducted at
constant speeds as well as continuously-decelerating speeds to verify consistent friction
results with respect to speed (i.e. “constant speed™ results matched up with “multi-speed”
results at their respective speed.). The tests revealed that this manner of data acquisition

was acceptable. This test approach was again verified using the actual test hardware at
EAFB.

Figure 3 clearly illustrates the acceptability of acquiring data in this manner. Note the
discrete data points from the “multi-speed™ run (continuous data acquisition while
decelerating). These data points are used to form a linear approximation of drag force
coefficient versus speed. Processing the data in this manner eliminates the noise from the



raw data. Next, note that the “constant speed” data points (data at only one speed per
entire test run) match closely with their respective location on the “multi-speed” plot.
The slight discrepancy in results is certainly within an acceptable range and also within
the “noise-floor” of the data accuracy.
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Figure 3. Multi-speed vs. constant-speed comparison: Drag force coefficient versus
speed using V201 full-scale nose gear skid (201N).

Resulting Test Procedure

To ensure a consistent method of data acquisition the following test run sequence was

developed (see figure 4).

» The vehicle was accelerated to maximum speed prior to the test section (the test
section was typically 900 feet long).

* The data recorders were activated just prior to the test section and the ITTV operator
was given a “proceed with test” command from the data operator.

e The ITTV operator would lower the test fixture at the beginning of the test section
and “S seconds of distance” (about 300 feet) was dedicated to achieving ground
contact and full load buildup on the skid specimen.

» After the 5-second period, the ITTV would pass a cone at which point the operator
would begin a constant deceleration and the vehicle would be brought to a stop in
approximately 500 feet.

* The data recorders were deactivated after the vehicle was stopped.
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Figure 4. Graphical depiction of typical test run.

The test runs were staggered such that each pass was made over a fresh. undisturbed
surface to ensure data accuracy. In other words, test data were not acquired over
previously tested soil or in a tire track left from a previous run. This was particularly
important for testing on the softer regions of the lakebed.

Small Crab Angle Effects on Test Matrix Size

It was believed that any friction property changes due to small crab angles (2 degrees and
5 degrees) would be negligible and well within the “noise-floor™ of the data accuracy.
Therefore, NASA LaRC recommended removing the “small” crab angle (referred to as
yaw angle in the test data) test runs from the test matrix.

Preliminary tests were conducted to compare the drag force coefficient versus speed for
the following crab angles: 0 degrees, 2 degrees, and 5 degrees. Figure 5 illustrates the
results from these test runs. Note that all three plots are virtually identical and overlay
each other quite closely. Therefore. it was reasonable to assume that the geometric
effects (i.e. effect of small leading edge contour change, effect of small center of pressure
to center of load location change, and effect of small side force component change) from
small crab angles on coefficient of friction were negligible. Thus. all 2- and 5-degree
crab angle test runs were eliminated from the test matrix. This resulted in an updated
matrix (shown in Table 2) that, when combined with the previous multi-speed discussion.
required only 80 test runs as compared to the originally-planned 720 runs.
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Figure 5. “Small” crab angle comparison: Drag force coefficient versus speed using

V201 full-scale nose gear skid.

Table 2. Reduced test matrix.
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Appendix B contains the list of all planned test runs. Along the way, some of the planned
test runs were omitted due to hardware safety concerns, some of the tests were not needed
due to similarity to other tests, and some additional test runs were added to gain a more
complete understanding of skid behavior. Runs with an “ITTV Run Number” appended
to them were actually conducted. Appendix C graphically shows the places in the high-
load portion of the test matrix that were tested and those that were not. The values shown
in Appendix C represent the drag force coefficients at the conditions shown.
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Data Acquisition / Data Reduction

Raw data (provided in Appendix D) acquired from each test run were in the form of load-
cell component force time histories for normal. drag, and side loads. ITTV speed and
distance were also measured. All data were recorded at 10 samples per second. The drag
and side loads were measured in the test specimen coordinate plane, so true drag force
(force parallel and opposite the velocity vector) and true side force (force perpendicular
to the velocity vector) would require an angular transformation using the yaw or crab
angle. Rather than apply the required transformation to the drag load itself, the drag
force coefficient was calculated by dividing the drag force time histories by the normal
force time histories and then the angular transformation was applied to the drag force
coefficient. Thus, when these data are presented, the drag forces shown are in skid
coordinates, and the drag force coefficients are in velocity vector coordinates.

For runs conducted with crab angle present, the side forces as well as the drag forces
were evaluated. If no true side load was present, then the measured side and drag loads
should each resolve into the same true drag load. In each case, it was confirmed that the
total drag loads in the velocity vector coordinates were pure. For example. in tests
conducted at a 45 degree crab angle, the measured side and drag forces were equal thus
indicating no true side load as compared to the velocity vector was being produced and
that all of the forces generated by the skid were parallel and opposite the velocity vector.

Results and Discussion

Test Run Observations

One of the first and most significant observations was that. as expected. “friction™ in the
classical sense (i.e. a block of wood sliding down a wedge) had very little to do with any
results labeled “coefficient of friction™. In fact, it is far more accurate to refer to this
energy altenuation mechanism as merely a “drag force coefficient.” Therefore. this will
be the terminology used from this point forward.

Drag Force Mechanisms

The drag force (and thus. the drag force coefficient after division by the normal load)
produced by the skid specimens appears to ultimately result from combinations of the
drag forces produced by several mechanisms. Figure 6 shows a photograph of the results
of each of the following drag-producing mechanisms:

a. Forces due to conventional friction as described above. (figure 6a)

b. Direct mechanical interference forces produced in the path of the plowing skid
specimen (plowing appears to be influenced heavily by surface strength). (figure
6b)

¢. Forces produced by the imparting of momentum to the soil particles that are
“thrown™ laterally by the plowing action in a direction not parallel to the velocity

11



vector (e.g. the “side plume™ of dirt left after certain testing on soft surfaces).
(figure 6¢)

ot

ige 6a. Forces due mainly to friction.

Figure 6¢. Significant forces dedicated to “side plume”.

Figure 6. Examples of the three drag force-producing mechanisms.

The landing gear skids act more like snow skis than any classic, molecular-type
representation of a friction problem, especially as the test surface gets softer. Therefore,
keeping this “ski” analogy in mind aids tremendously in understanding both the test
results and V201 skid design modifications discussed later in this report.

Skid Behavior
Qualitatively, the skid behavior can be separated into three distinct types of behavior:
¢ skiing or terra-planing (stable)
* horizontal plowing (meta-stable plowing)
¢ nose-dive plowing (unstable plowing)
A skiing or terra-planing behavior has occurred when the skid appears to glide over the

surface. On a hard surface, a mark is barely visible after each test. On a soft surface, the
loose material is brushed out to the sides keeping the nose of the skid relatively high and

12



clean. This type of behavior is the most favorable because it is the most stable and
corresponds to the lowest drag force coefficients. This behavior also roughly
corresponds to drag force-producing mechanism (a) above and is shown in figure 6a.

A horizontal plowing behavior occurs when the skid breaks through the surface and
plows but stays consistently level once it has penetrated to its “steady state™ depth.
Typically not seen on extremely hard surfaces, this behavior was observed to occur both
on surfaces of medium and low hardness with certain skid designs. In addition, this
behavior typically becomes more evident towards the end of a test run when the vehicle
is traveling fairly slowly. This will be discussed in greater detail later. Although not
“catastrophic™ in nature. this type of behavior is unfavorable and is referred to as “meta-
stable™. The drag force coefficients for a horizontal plowing behavior also tend to be
somewhat higher than those recorded for a terra-planing behavior. Figures 7a and 7b
show two examples of horizontal plowing behavior. Figure 7a shows the behavior on the
medium-strength surface with the originally-proposed full-scale V201 nose gear skid
(201N), and Figure 7b shows this behavior on a very low-strength surface with the
modified V201 nose gear skid (20INR, to be discussed later).

ik S L Z Rris: datnd™s B

Figure 7a. Meta-stable on medium surface. Figure 7b. Meta-stable on soft surface.
Figure 7. Examples of horizontal plowing on medium and soft surfaces.

A nose-dive plowing behavior occurs when the nose pitches down and the skid digs into
the ground divergently. This is considered both a catastrophic and a totally unacceptable
skid behavior. Most skid test runs that displayed this behavior resulted in fixture damage.
sheared fixture bolts, and a substantial loss of steering control for the test truck driver.

On the medium-strength surface, the only reason that nose-dive plowing did not
completely diverge and damage the hardware was because the fixture was able to fully
extend and “bottom out™, thereby eliminating the vertical load on the skid. Because this
medium-strength soil density was not as great as the soil density of the hard surface. the
fixture was able to tolerate the drag loads produced by nose-dive plowing on the softer
surface. Obviously, the drag force coefficients for these runs were sizably higher than for
runs exhibiting other behaviors and in some cases the values were off-scale and not even
measurable. An example of a test in which the drag force coefficient was quite large is
seen in figure 6¢.

13



Both horizontal plowing and nose-dive plowing exhibit all three drag force-producing
mechanisms from above but it is surmised that the frictional forces from mechanism (a)
are substantially overshadowed by the other two mechanisms (b and c). The amount of
contribution to total drag force by mechanism b or ¢ may be related to not only the
surface density but also to the relative stability produced by the geometry of the skid
itself. In other words, a skid that is either designed or operated such that the center of
load is not behind the center of pressure will exhibit nose-dive plowing and throw a lot of
soil laterally. However, a skid designed with an appropriate load and pressure center,
(depending on leading edge curvature and soil strength), may have a meta-stable
horizontal plowing behavior and not produce as much “side plume™. Figure 8 illustrates
the three skid behaviors in general stability terminology.

STABILITY TERMINOL OGY SKID MOTION

Stable \./ Skiing, terra-planing

Meta-stable
Horizo ntal plowing
Unstable A Nose-dive plowing

Figure 8. General skid stability break-down.

These three skid behaviors, or motions, come about as a result of the complex interaction
of the skid geometry itself and the type of surface (which may be described with a soil
hardness value and/or a soil density value and/or a cone index value described later).

Surface/Soil Effects

Surface Hardness: The soil or surface hardness (or density) appears to determine how
deeply the skid penetrates (even if it is a “stable™ skid design). This penetration provides
an initial elevation (relative to the skid pitch pivot point) where the combination of drag
forces is coincident. Figure 9 shows a sketch of a skid with limited penetration and one
can note the pitch-down moment tendency associated with the drag force as drawn. Note
that the drag force is not necessarily parallel to the velocity vector » Velocity

@itch-down moment
/ @\

Drag Force

Figure 9. Sketch showing tendency of drag force to create pitch-down moments and
unstable behavior.
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Figure 10 presents test data showing the effect of soil strength (or hardness) on the drag
behavior of a skid at a yaw angle of 45 degrees.
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Figure 10. Effect of surface strength on drag force coefficient versus speed.

The surface strengths were quantified by performing a penetration test using a rectangular
bar attached to the pneumatic loading fixture of the ITTV. A 1.5 square-inch bar was
forced into the ground at each test site and the pressure required to achieve a 1-inch
penetration depth was recorded. This is quite similar to a commercially available device
known as a Cone Penetrometer, and surface strength values are reported as a ““cone
index” (CI) which is the pressure in Ibs. per square inch to achieve certain penetration
depths. The hardest surface tested (EAFB1) had a CI of approximately 3000, the medium
surface (EAFB2) had a CI of approximately 1000, and the softest surface (EAFB4. which
is similar to a beach-like surface) had a CI of about 500. It had been reported that the
“average” soil strength picked at random on the Earth’s surface is much more likely to
resemble that of the medium surface (EAFB2) as opposed to a surface that is significantly
harder or softer.

Bearing Pressure:  All of the above surface strengths, in terms of pressure, would
appear 10 be able to support any of the skid specimens tested. Table 3 lists the
approximate bearing pressure each skid specimen would impart to the surface under a
vertical load of 5000 lbs., and includes a value for a redesigned nose gear skid discussed
later.

15



Table 3. Calculated bearing pressure for each skid at 5000 Ib. load.

Skid Specimen Calculated Bearing Pressure
201N (full-scale nose) 21.4 psi
201NS (sub-scale nose) 85.6 psi
201M (full-scale main) 14.5 psi
201MS (sub-scale main) 90.4 psi
210NR (redesigned nose) 21.4 to 48.3 psi depending on
skid penetration level

None of the specimens have a bearing pressure that even comes close to the Cl values
that were measured using the bar described in the previous section. Based on a bearing
pressure comparison only, it would appear that all of the surfaces, including the beach-
like EAFB4, could support any of these skids. However, as soon as testing commenced
on the medium-strength surface EAFB2. it was found that the sub-scale V201 nose and
main gear skids buried themselves deeply in that surface even though the ratio of surface
strength to bearing pressure was nearly a factor of 11. Extrapolating this result revealed
that there was no chance of the sub-scale V201 nose and main gear skids being
adequately supported on EAFB4. Clearly, other factors are more determinative of
adequate skid flotation than the bearing pressure alone. The following section describes
the geometry effects that cause this phenomenon and explains why skid geometry is
apparently a much more important consideration for adequate behavior than is the
bearing pressure.

Skid Geometry Effects

Skid geometry heavily influences the dynamic behavior of the skid. The most important
geometry factors are as follows:

 The geometry of the skid center of load relative to its center of ground contact
e The geometry of the skid leading edge’

Recalling from figure 9, the drag force is not necessarily parallel to the velocity vector. If
the skid leading edge were completely flat (i.e. a square-edged skid) then perhaps the

drag force would be parallel to the velocity vector. Figure 11 shows a sketch of a skid
similar to that in figure 9 but with a leading edge having a much larger radius.

tohe 2
/5\ Pitch-down moment? __’ Velocity

Drag Force

Figure 11. Sketch showing the effect of leading edge curvature on the pitch-down
moment.
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Depending on the curvature of the leading edge and the angle of incidence of the total
drag force, there may or may not be a nose-down pitching moment for this configuration.
However, it is clear that the behavior of the relatively square-edged skid shown in figure
9 would be drastically improved by adopting the leading edge curvature shown in figure
I'l. Testing on medium-strength soil (denoted in Appendix B as EAFB2) showed that the
originally-proposed V201 nose gear skid basically behaved satisfactorily (i.e. non-
divergent plowing) until the crab angle rose above 30 degrees. When this skid was tested
at a 45-degree crab angle on this medium-strength surface, it dug in severely as
previously discussed. While the proposed V201 main gear skid had a somewhat larger
edge radius, it was felt that it would behave in essentially the same way as the nose gear
skid. This appears to be a result of the interaction between the drag force incident angle
and the skid geometry with particular reference to the pivot point and center of pressure
on the skid. Figure 12 shows a sketch of a skid and the general orientation and position

of the forces acting upon it.
(lzoad

—’ Velocity

L | )
|
I < :
: Drag
UG
eom
Pressure Moment Arm “A” !
—Pi
1
ress

Figure 12. Free body diagram of typical skid forces.

Figure 12 depicts the important relationship between the vertical loading point (center of
load). the drag force, and two other points in the skid footprint: the center of geometry
and the center of pressure. If the skid were motionless, the center of pressure would be
coincident with the center of geometry. However., as soon as the skid attains forward
motion. the center of pressure (i.e. where the effective ground vertical load reaction is
located) must move aft of the center of geometry. Thus. to obtain a stable skid design.
one must design the pivot point (or center of load) to be aft of the geometric center.
Further, the center of pressure (a difficult point to positionally define) needs to be
forward of the center of load as well. The reason for this is to provide a restoring
pitching moment to counteract the effect of any negative pitching moment produced by
the drag force.
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For the present testing, it was desirable to conduct tests with the skid specimens at crab
angles simulating the possible attitudes of V201. For certain off-nominal conditions, crab
angles at landing could range above 45 degrees and, in fact, could conceivably reach 180
degrees denoting a landing in which the wind speed exceeds the V201 forward flight trim
speed. The sketches in figures 13 and 14 (views from above the skid) describe the
relationship between the center of pressure and the center of load as crab angle is
increased.

‘ ‘ Pressure moment arm “A”
Velocity

. —

@ Center of Load
QO Center of Pressure

© Center of Geometry

Figure 13. Sketch of relative positions of geometric variables at zero crab or yaw angle.

In figure 13, the pressure moment arm “A™ multiplied by the vertical load can be
assumed to be sufficient to counter the nose-down pitching moment due to drag.

Pressure moment arm “A”

Velocity
ﬁ

. Center of Load

O Center of Pressure
© Center of Geometry

Figure 14. Sketch of relative positions of geometric variables at large crab or yaw angles.
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In figure 14, the pressure moment arm “A™ is now decreased by a factor of the sine of
crab angle. Multiplying this shorter length by the vertical load obviously produces a
smaller moment to counter nose-down pitching moment due to drag than that shown for
the zero crab or yaw case. Thus, as shown in figures 13 and 14, there may exist a crab
angle (even for an otherwise “stable™ skid) beyond which the positive pitching moment
created by the forward (in the velocity vector) center of pressure is overcome by the
negative pitching moment caused by the drag force. The actual value of this angle is
specific to each skid design. leading edge curvature, and surface strength. The surface
strength plays a part as described previously because it tends to determine much about the
true direction and elevation of the effective drag force. It is this phenomenon that caused
the originally-proposed V201 nose skid design to act satisfactorily up to 30 degrees crab
angle. However, between 30 and 45 degrees crab angle for that skid design on the
medium strength soil tested, the pressure moment arm “A” decreased (figure 14) to the
point where the moment balance switched directions and the negative moment created by
the drag force was greater than the positive moment due to the forward center of pressure.
This resulted in the divergent nose-dive behavior observed. A photograph of the
originally-proposed V201 nose gear skid after this test is shown in figure 15. This
reasoning, extended to 90-degree crab angles and above, suggests that a positive pitching
moment cannot be achieved and digging in is quite likely. In fact. even a slow-speed.
zero-degree crab test performed on the V131 main gear skid specimen showed
unacceptable and dangerous nose-down pitching moment behavior because the center of
load was forward of the geometric center of the footprint. Figure 16 shows photographs
of this configuration and figure 6b shows a close-up view of the result of that test. This
unfavorable skid geometry found on the V131/V132 main gear skid produced nose-dive
plowing even on a hard surface (see figure 6b). The plowing loads tend to rise in an
incredibly steep fashion and can rapidly destroy any attachment hardware (as was the
case with the ITTV) unless the vertical loads are reduced in an equally rapid fashion.
Hints of this nose-dive behavior are visible after actual V131/V132 flight test landings on
the hard region of the lakebed. The initial touchdown marks for the main gear skids are
reported to be quite similar to that shown in figure 6b with the exception that the actual
marks are not as deep. So, why then do the V131/V132 skids not fail similarly during
flight test landings? The answer lies in the two primary differences between the
V131/V132 flight configuration and the current test configuration. First, remember for
the test configuration, the skids are mounted in a “pedestal” configuration with one attach
point / pivot point. The V131/132 flight Landing Attenuation System (LAS) has a
forward drag link which attaches to the skid up near the leading edge. limiting nose-dive
motion. Second, during actual V131/V132 flight test landings, the belly of the vehicle
hits as soon as the main gear strokes (on the order of tenths of a second after initial skid
contact). This effectively unloads the main gear skids, limiting surface penetration and
limiting the overall drag loads on the skid. If this were not the case, the V131/V132 LAS
would likely experience catastrophic hardware failure during each landing along with the
likelihood of damage to the vehicle itself. Furthermore, the core differences between the
current test and the flight configurations, made it impossible to test V131/V132 skids as
originally planned (denoted with a * * *“ in the chart in Appendix C).

19



It should be noted that a test such as that shown in figure 6b proved to be a fairly reliable
indicator of the basic skid behavior. This quasi-static test consisted of applying load to a
skid specimen and then slowly dragging the specimen forward and provided much insight
about how that skid would behave in a high-speed test. Many tests, such as those planned
using the sub-scale V201 nose and main skid specimens on the medium and soft surfaces
were abandoned after realizing, with this type of quasi-static test, that they would behave
poorly and dig into the surface. Such tests are shown in Appendix C and are denoted by
“not done due to test/hardware safety or surface cannot support skid at all”.

Figure 15. Originally-proposed V201 nose gear skid (201N) buried after divergent
behavior.

Center of Load

Forward

>

-—:—-.__:j-m f
Cantact

Figure 16. V131 main gear skid design is unstable.

As a result of these findings, it appears to be unwise to land a skid-equipped vehicle at
high crab angles. Even fully symmetrical skids (i.e. a round pad) would at best provide
neutrally stable or unstable results, since it would not be possible to ensure that the center
of load is behind the center of pressure. Based on this, landings at crab angles greater
than 30 degrees should be avoided at all costs. In particular, a landing with a headwind
greater than the trimmed flight speed of the vehicle under the parafoil is a situation that
should not be taken lightly. It may well be better to land the vehicle downwind at a
higher overall energy than to land backwards which invites unstable skid behavior and
possibly destructive drag loads.
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Skid Redesign

After having described the required relationships between the center of load. pressure,
and geometry of the skid, consideration was given to an alternate full-scale V201 skid
design to alleviate some of the poor performance, especially at high crab angles and soft
surfaces. Because changing the center of load for the proposed V201 skid involves other
considerations such as stowage, etc.. and the center of geometry was not likely to change
for the same reason (no overall shape change or size growth for the skid). changing the
skid's performance at high crab angles and on soft surfaces could only be achieved
through changing the incident angle of the overall drag forces. The center of pressure,
while possibly being affected through changing the drag force incident angle. could not
be directly changed, nor is it known how to effect such a change. The incident angle of
the overall drag forces appears to involve an interaction between the skid's leading edge
curvature and the soil characteristics. Therefore, skid leading edge curvature was the one
avenue open for modification, and it was apparent that the change in edge curvature
needed to be a dramatic one. . The full-scale edge curvatures on the originally proposed
V201 nose and main gear skids both appeared to be extremely “sharp™ and gave the
impression that the skid performance would be no different than if the edge had no
curvature. The full-scale V201 nose skid (201N) was then modified as described earlier
with a 3.25-inch radius curvature on all sides (denoted as 201NR) and is pictured above
the softest surface tested (EAFB4) in figure 17.

Figure 17. Modified full-scale nose gear skid (201NR).

The sketches in figures 9 and 11 are, in fact, scale drawings of the originally-proposed
V201 nose gear skid (201N, figure 9. which has a radius of curvature of about 0.75
inches) and the newly modified version of that skid with a 3.25 inch radius of curvature
on all edges (20INR, figure 11). The intention of the increased curvature was to force
the tangent of the “stagnation™ point of the soil being displaced on medium and soft
surfaces to an angle other than essentially vertical as it was on the originally-proposed
V201 nose gear skid design. This would then produce an upward component of the drag
force as sketched in figure 11. On the hardest of surfaces, since no appreciable surface
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penetration was present, this modification has no real effect whatsoever. Any upward
drag component at the nose of the skid would translate into reduced (or possibly
eliminated) pitch-down moment, contributing to a more stable skid behavior and/or
increased crab angle that could be achieved before the pitch-up moment created by the
center of pressure was overcome by the pitch-down moment created by the drag force. It
may actually be possible that the angle of incidence of the drag force could be directed
above the skid pivot point, insuring positive pitch-up moments. However, as the skid
crab angle is increased, because of the relative narrowness of the skid at some point the
line of action of the drag force would most likely act below the pivot point. It was also
expected that the modified skid would allow flotation on the softest of surfaces, since the
beneficial curvature would still be present even though the skid penetrates the surface
more deeply and exhibits the horizontal plowing, but stable, behavior. All of these
expectations were realized with this modification. Figure 18 presents a plot of the
behavior of the originally-proposed V201 nose gear skid versus the newly-modified
V201 nose gear skid design at high speed on the medium-strength surface.

1.0F
09F
08¢t
0.7 ¢
0.6 | Originally-proposed skid o -
0.5 @5 ,,,,, T ___' --------- - Newly-modified skid
0.4F o

0.3F ERCTEE

0.2 E G 201NR

——- Linear (201N}
0.1F ----Linear (201N9)

Oo-lALlIAIIIAlllAAlIIAJ

0 10 20 30 40 50
Yaw (degrees

Drag Force Coefficient

Figure 18. Modified nose skid design produces lower overall drag forces on EAFB2.

Tests as shown above were conducted on the medium strength surface (EAFB2) and the
modified nose gear skid (201NR) exhibited excellent stability and flotation behavior,
with no apparent tendency to dig-in even at a 45-degree crab angle. a condition that was
totally unacceptable with the nose gear skid as originally designed. Finally, tests were
conducted on surface EAFB4, a dirt/sand road in the EAFB “PIRA™ area on Photo
Resolution Road. Based on the prior testing experience, each member of the test team
was confident that none of the originally-proposed V201 skids (either full- or sub-scale)
had even a remote chance of providing adequate, stable floatation on this extremely soft
surface. Three tests of the newly redesigned V201 nose gear skid (210NR) were
conducted at initial speeds of 20 mph. The surface was so soft and narrow that it was
dangerous to operate the ITTV at speeds greater than 20 mph. Figure 19 shows a blown-
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up portion of figure 7b and the plowing, but stable nature of the skid can be seen more
clearly.

Figure 19. Redesigned nose gear skid provides floatation on soft surface.

Figure 19 shows the appearance of the surface after a zero-degree crab angle test.
Subsequent testing at 30- and 45-degree crab angles had virtually identical appearances
except that the path was wider because of the crab angle. In each case very satisfactory
skid performance was noted. with sand being thrown laterally in a significant side plume.
Referring back to figure 10, one can see that the drag forces associated with operating on
this soft surface were higher than for the medium or hard surfaces. indicating that more
energy is being expended into creating the side plume than for the other surfaces.

Conclusions and Recommendations

A series of tests was conducted to determine the drag force coefficients and dynamic
behavior of various X-38 landing gear skids (atmospheric test flight vehicles 131/132 and
space test vehicle 201) on surfaces of varying hardness. The tests were conducted on
lakebed surfaces at the Edwards Air Force Base dry lakebed and surrounding area.
Approximately 121 tests were conducted using six different specimens. The specimens
included:

* VI31/V132 main gear (actual flight hardware),

* the current V201 nose gear design.

* the current V201 main gear design,

* asub-scale of the current V201 nose gear design (50% scale).
* asub-scale of the current V201 main gear design (40% scale).
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s a newly modified, full-scale V201 nose gear skid with substantially increased
edge curvature than its original design (3.25-inch edge radius versus
approximately 0.75-inch radius).

The testing concentrated on three different surfaces with soil strengths ranging from very
soft to very hard, with a medium-strength surface in the approximate hardness range of a
randomly selected point on the Earth. The following are conclusions and
recommendations reached as a result of this testing:

+ The V131/V132 main gear skid design is unstable in the current test configuration. It
has a center of load (pivot point) forward of the geometric center of its ground contact
area. This causes the nose of the skid to tend to dig-in and create destructive drag
loads on the test fixture and attachment hardware. For the flight configuration,
vehicle belly contact during landing coupled with the forward drag link prevents
excessive drag loads on the skid and, therefore, the LAS. This is accomplished both
by limiting the vertical load on the skid and by keeping the “nose” of the skid up.
However, landing gear damage caused to date from flight tests may have been caused
by this inherently unstable skid behavior.

 Skid landings on the hardest portion of the lakebed are insensitive to bearing pressure,
skid edge curvature, vertical load, and skid scale, resulting in relatively consistent
drag results. However, skid behavior remains extremely sensitive to center of load
versus center of pressure positioning even on the hardest of surfaces.

* The originally-proposed V201 skid designs provide adequate flotation and stability at
crab angles up to 45 degrees. but ONLY on the hardest of lakebed surfaces. Unstable
skid behavior was observed for the nose skid and should be expected for the main
skid at higher crab angles on this hard surface.

* Landings on soft surfaces with the originally-proposed V201 skid designs should not
be attempted.

 Landings on medium and hard surfaces at extremely large crab or yaw angles (i.e.
greater than 45 degrees), including backwards landings (i.e. 180 degree crab angles),
should be expected to exhibit unstable, destructive skid behavior and possibly
produce enough drag force to overturn the vehicle. Landings with crab angles greater
than 30 degrees, if using the originally-proposed V201 skids. should be avoided at all
costs. Landings with crab angles greater than 45 degrees. if using the newly-modified
skid design, should be avoided at all costs.

* Quasi-static skid testing (loading the skid at “zero horizontal velocity™ and slowly
dragging forward) offers a fairly reliable method of determining the overall skid
stability and behavior.

« Skid drag forces are opposite the velocity vector and side forces transverse to the
velocity vector are not produced even in the presence of a crab angle.

e Drag force coefficient increases linearly as speed decreases. Increasing crab angle
increases drag force coefficient, though to a lesser extent than the speed effect.

e Bearing pressure values compared to surface strength measurements do not
adequately describe the resistance of a skid to “digging-in.” Other parameters such as
leading edge curvature and pivot point location versus center of geometry are far
more important design considerations for stable skid behavior.
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Scale model testing for dynamic behavior appears to be unsatisfactory. A method to
appropriately scale edge curvatures, bearing pressures, and skid geometry while the
soil and surface characteristics remain un-scaled is currently unknown.

Extremely large skid edge curvature (including the leading edge and sides if crabbed
landings are desired) is probably the single most important design consideration after
ensuring the center of load is sufficiently aft of the center of geometry.

The originally-proposed V201 skid designs (both nose and main) have edge
curvatures so sharp that it renders the skids unstable above 30 degrees crab on the
type of surface that is most likely to be landed upon (medium strength surfaces).

It is recommended that the originally-proposed V201 skid designs (both nose and
main) be modified to have all edges with a radius of curvature of 3.25. This edge
curvature allows stable behavior on soft, medium, and hard surfaces at up to 45
degrees crab angle.
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Appendix A: V201 Skid Drawings
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Appendix B: Planned and Actual Test Runs
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Appendix C: Graphical Depiction of Test Matrix
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Appendix D: Raw Test Data
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